1.5.1 有理数的乘方(第二课时)导学案
一、学习目标:
1
.知道有理数加、减、乘、除、乘方混合运算的运算顺序
.
2
.会进行有理数的混合运算
.(
运算能力)
重点:有理数的混合运算顺序、运算法则和运算律的应用
难点:应用有理数的混合运算解决规律探究和实际应用问题.
二、学习过程:
复习回顾
乘方的定义:
_
__________________________
的运算叫做乘方,_
___________
叫做幂.
组成要素:
乘方的符号法则:
(1)正数的任何次幂是______;
(2)负数的偶次幂是_____;负数的奇次幂是_____;
(3)0的任何次幂等于____;
(4)1的任何次幂等于____;
(5)
-
1的偶次幂等于____;
-
1的奇次幂是_____.
自学导航
问题:
我们学习了有理数的哪些运算?
一个运算中,含有有理数的_
_____________________
等多种运算,称为
有理数的混合运算.
思考下列问题:
(1)2÷(2×3)与2÷2×3有什么不同?_
______________________________
(2)2÷(
-
2)与2÷
-
2有什么不同?_
______________________________
(3)6÷(
-
3)
2
与6÷(
-
3
2
)有什么不同?_
______________________________
思考
:
下面的算式含有哪几种运算
?
先算什么,后算什么?
【运算顺序】
1.
____________________________________________________________
;
2.
____________________________________________________________
;
3.
____________________________________________________________
.
考点解析
考点1:有理数的混合运算
★★
例1.
计算
:
(1)(
-
1)
3
-
÷(
-
4)×
; (2)(
-
3)
2
×(1
-
3)
-
(3
-
3
2
);
(3)(
-
4)×[(
-
3)
2
+2]
-
(
-
3)
3
÷(
-
2).
【迁移应用】
计算
:
(1)
-
1
4
-
(
-
)÷3×|
-
2|;
(2)
-
2
3
÷
×(
-
)
2
;
(3)9+5×(
-
3)
-
(
-
2)
2
÷4;
(4)(
-
4)
3
-
2
2
-
|
-
|×(
-
8)
2
;
(5)
-
3
2
+[1
-
(
-
1)
3
]×2÷
; (6)
-
5
3
+[(
-
4)
2
-
(1
-
6
2
)×3].
考点
2
:稍复杂的有理数的混合运算
★★★
例2.
计算
:
(1)
-
4
3
÷
×(
-
)
2
-
(1
-
3
2
)×2;
(2)
-
1
4
-
(2
-
1
)×
×[5+(
-
2)
3
];
(3)
-
2
4
÷[1
-
(
-
3)
2
]+(
-
)×(
-
15);
(4)
-
3
2
-
|(
-
5)
3
|×(
-
)
2
-
18+|
-
(
-
3)
2
|.
【迁移应用】
计算
:
(1)
-
(
-
2)
2
+2
2
-
(
-
1)
9
×(
-
)+
-
8;
(2)1
×[3×(
-
)
2
-
1]
-
÷(
-
4)
1.5.1 有理数的乘方(第二课时)(导学案)七年级数学上册同步备课系列(人教版).docx